GREEN*M***E**UP

Enhancing the uptake of biomethane in Europe

European Biomethane Market Today

Prepared by: George Osei Owusu Date: 17th February,2025

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 101075676.

Biogases today

22 bcm

of biogases produced in Europe, more than the entire inland natural gas consumption of Belgium, Denmark and Ireland combined

biomethane produced in Europe in 2023, with 6.1 bcm/year of installed capacity

Potential to replace

of nitrogen-based fertilisers in the EU with 2022 digestate production

25

European countries are active in biomethane production

18% increase in biomethane produced in Europe

e n Europe New producing countries in 2022 and 2023

of bio-CO2 produced from biogas and biomethane production

Balanced distribution across end-uses:

250,000

green jobs in Europe

GREEN/ME

22 bcm of biogases are produced today in Europe

©2024

Combined biomethane and biogas production in Europe

= Gas consumption of Belgium, Denmark and Ireland combined = 7% EU gas consumption in 2023

19 bcm of combined production in EU-27

Combined biomethane and biogas production in Europe (bcm)

Biggest growth on biomethane production to date

EU-27 Europe

©2024

EBA

In 2023: 4.9 bcm biomethane production (4.1 bcm in EU-27)

- 18% YoY growth in Europe
- 21% YoY growth in EU-27

In Q1 2024: 6.4 bcm biomethane installed capacity

Italy, France, Denmark, and the UK are leading the production and

scale-up of biomethane

Biomethane production in the EU-27 and Europe (bcm)

> 200 new biomethane plants in 2023

Denmark

France
Germany

©2024

United Kingdom

EBA

Development of number of plants in Europe

In 2023:

- 1,510 biomethane plants in Europe
- 1,324 biomethane plants in EU-27

25 biomethane-producing European countries.

The most recent additions are:

- Portugal (2022)
- Lithuania and Ukraine (2023)

> 85% connected to gas grid, mainly distribution grid

Number of new biomethane plants in Europe each year, 2008 - 2023, overall per country

Biomethane: a versatile renewable fuel

Percentage of biomethane production used in different sectors overall (left) and per country (right)

Future potential of biomethane in Europe

Transition towards sustainable feedstocks

l andfil

©2024

Utilisation of feedstock delivering the best GHG savings

Since 2020, no new plants were established to run on energy crops as main feedstock.

Instead, new plants are being built to run on agricultural residues, organic municipal solid waste, sewage sludge and industrial waste.

250 200 Number of newly installed biomethane plants 150 100 Unknown 50 Industrial (food and drink) Organic municipal solid waste Sewage sludge Agricultural residues, manure and plant residues Sustainable crops 2008 2008 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2009 2023 EBA

Number of new biomethane plants in Europe per feedstock type, 2008 - 2023

Growth prospects for biomethane towards 2030

Accelerated growth needed to reach 35 bcm target by 2030

Current biomethane growth rate of 21%

Close to the biomethane volumes
 committed in the NECPs towards 2030

Optimal market and regulatory

conditions: essential for sustained growth.

- Coherent planning of biomethane potential
- Faster permitting procedures

EU-27 biomethane growth curves towards 2030

NECPs 2030: Is the planned growth ambitious?

Gap analysis NECP 2024 biomethane targets

- NECP not published
- No biomethane target in NECP
- Biomethane target above 2030 potential
- Biomethane target > 20% lower 2030 potential
- Biomethane target < 20% below 2030 potential</p>

15 bcm: Total volume of biomethane committed towards 2030

13 countries have a biomethane-only target

18 countries have a biomethane and/or a biogas target

Enabling a resilient transition

Production potential in EU-27 until 2050 compared to existing production (bcm)

Sources: EC, Impact Assessment Report, SWD(2024) 63 final (2024), EBA, Statistical Report 2023 (2023); Gas for Climate, Biomethane Production Potentials in the EU (2022); Guidehouse, Biogases towards 2040 and beyond (2024).

2040

Biomethane production could supply **85% of gaseous fuels** demand

Balancing the **ENERGY TRILEMMA** while responding to great societal challenges: waste management, farming emissions abatement, affordability.

Biomethane potential of 111 bcm/yr in 2040

Biomethane potential per country

* Production based on sustainable feedstocks such as agricultural residues, manure, sequential crops, municipal solid waste, wood waste and forest residues.

Increasing biomethane production

Biomethane production potential can be further increased by deploying novel feedstocks and technologies, as well as landfill gas

Feedstocks

Digestate from anaerobic digestion

Digestate can be used to produce additional biomethane using either Hydrothermal gasification or Pyrolysis, in specific cases

Marginal and contaminated land

Significant potential for underutilised lands to produce bioenergy crops, without contributing to increase in land use change, or compromising existing food or feed production

Seaweed

Interest in using 'cast' seaweed as a sustainable feedstock for biomethane production, while also delivering multiple co-benefits

Technologies

Hydrothermal gasification

Versatile technology that can process a wide variety of (wet) biogenic and fossil wastes and effluents into biomethane, as well produce multiple co-products

Landfill gas

Existing landfill gas sites represent an important source of low cost biomethane production in the short to medium term

Renewable methane

Renewable methane production can facilitate energy system integration, and also help to increase overall biomethane production yields

Methanation

Integration of the energy system Stronger connection between the electricity and gas grid

Seasonal energy storage

Excess renewable electricity is stored in the gas grid in the form of emethane

Complementary roles for **hydrogen and biomethane**

5 times more plants in 8 years

10 European countries have running or expected plants by 2027

Growth expected

- France (+11 plants)
- Finland (+8 plants)
- Germany (+6 plants)

Nearly 3,000 GWh of e-methane by 2027

Production capacity shows even steeper growth

Biggest production capacities in 2023

- Finland (282 GWh/year)
- Germany (68 GWh/year)
- Denmark (64 GWh/year)

Finland has big biogenic reserves, linked to district heating facilities, pulp and paper, waste-to-energy and AD

Bio-CO₂ potential from biogas and biomethane production

Today, CO_2 as feedstock is mainly from fossil origin, obtained from the production of synthetic fertilisers, which is highly energy-intensive. CO_2 is a needed input to produce chemicals, fuels, food and beverage products or construction materials, among others. **Replacing fossil CO_2 by a sustainable and circular alternative such as bio-CO₂** leads to a **negative emissions** footprint which is not possible in the production of CO_2 from fossil origin.

Source: EBA 2022 'Biogenic CO2 from the biogas industry'

GREEN/

Mapping bio-CO₂ plants in Europe

Biogases' contribution to the biogenic CO₂ industry

25 bio-CO₂ plants in Europe

 Producing 189 ktonne of biogenic CO2/year

42 additional bio-CO₂ plants expected by 2027

 Set to add 421 ktonne of biogenic CO2/year

66% of plants use or will use agricultural residues

Several European countries are developing support schemes to promote CCU and CCS. Current and future development of the number of plants with CCU and CO_2 production capacity (t / year)

How to boost the scale-up of **Biomethane?**

How to boost the scale-up of biomethane?

Solid and consistent **regulatory framework** (clear objectives and guidelines for the industry, positive signals for investors)

Encourage **sustainable** biomethane **production** (compliance with RED III, access to sustainable financing and EU ETS)

Facilitate grid injection and cross-border trade of biomethane

Increase investments on **R&D** to speed-up the development of new technologies, novel feedstocks and improve efficiency

Valorise digestate and bio-CO2 as biogases co-products

GREEN*M***E**UP

Thank you!

- greenmeup-project.eu **GreenMeUp Project** in GreenMeUp Project
- info@greenmeup-project.eu

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 101075676

LATVUAS BIOGĂZES ASOCIÁCU

盡

