Biomethane market uptake

A holistic framework of Key Performance Indicators for assessing national biomethane market uptake in European countries

Ronja Wollnik, Laura García Laverde, Nora Szarka

DBFZ - Deutsches Biomasseforschungszentrum gGmbH Department: Bioenergy systems Working group: Biomass in the energy system

24-27 June | Conference & Exhibition 28 June | Technical Tours Marseille

Results Methodology \rangle

Why biomethane market uptake matters in EU countries?

Figure 1.5

- European Green Deal: climateneutrality by 2050
- Fit for 55: reducing EU • emissions by at least 55 % by 2030
- RePowerEU: 35 billion cubic metres (bcm) of biogas/biomethane per year by 2030

Biomethane production volumes are growing rapidly, but not fast enough to meet targets

Outlook

Source: EBA Statistical Report 2023

Methodology **Results**

Outlook

Why develop Key Performance Indicators?

The PESTEL framework is useful to capture all system components:

Aim >

Results > Outlook

How did we develop the indicators

1. Longlist Collection of all potentially relevant indicators according to PFSTFI categories (literature, exchange with colleagues) Approx. 70 indicators

Methodoloav

Market a	cceptance	Socio acce	political ptance	Community acceptance
Consumers, in	vestors, intra-firm	Of technologie: the public, by ke policy	s and policies, by y stakeholders, by makers	Procedural justice, distributional justice, trust
Willingness to use/ to pay	Supplier perceptions	Knowledge and general acceptance	Perception by key stakeholder S	On regional level: trust, fairness risk perception. Based on interviews, conduct a qualitativ assessment and then transfer results to 1-7 scale within the
Identify ~5 key questions from the survey	make interview partners point out a score for	Identity ~5 key questions from the survey	make interview partners point out a score for	GreenMeUp team (expert judgement)

4. Test runs Apply to example countries and improve method, provide instructions for framework completion

5. Complete set of indicators

(Indicator n: definition, measuring, scoring, data sources, instructions for application)

	Key indicator		Scores		Band	width	No	ormalized sco	res
Number	Name	Status quo	2030	2050	Min (=0%)	Max (=100%)	Status quo	2030	2050
	1 Level of policy commitment				0	4	0%	0%	0%
	2 Feedstock readiness				0	3	0%	0%	09
	3 Valorization of by-products				0	6	0%	0%	0%
	4 Infrastructure performance				0	4	0%	0%	0%
	5 Emission reduction potential				0	2	0%	0%	0%
	6 Social perceptions				0	6	0%	0%	0%
	7 Financial support				0	4	0%	0%	0%
	8 Stakeholder networks				0	6	0%	0%	0%

Which indicators describe the market uptake of biomethane

Eight key indicators for evaluating the biomethane market uptake at national level

Indicator	PESTEL category	Indicator name
number		
1	Policy	Level of policy commitment
2	Technological	Feedstock readiness
3	Economic	Valorization of by-products
4	Technological	Infrastructure performance
5	Ecological	Emission reduction potential
6	Socio-cultural	Social perceptions
7	Legal	Financial support
8	Socio-cultural	Stakeholder networks

1) Level of policy commitment

- EU National Energy and Climate Plans (NECPs) submitted by Member States
- 24 draft updated NECPs were published in 2023, among which
 - 12 contain a biomethane target for 2030,
 - 6 contain a biogas target only for 2030
 - 6 contain no target for biogas or biomethane

4	3	2	1	0
NECP with 2030	Pre-NECP 2030	Action plan in	Study on	None of the
biomethane	biomethane	place	potential without	above in place
target in place	target in place		a target in place	

100 %

> Methodology >

Aim

2) Feedstock readiness

Total of all countries

Outlook

Anaerobic digestion: feedstock potentials for biomethane production in the EU-27 in 2030. Adapted from Guidehouse (2022). **Thermal gasification**: feedstock potentials for biomethane production in the EU-27 in 2030. Adapted from Guidehouse (2022). Methodology

Outlook

2) Feedstock readiness

- Data avilability
- Feedstock potential
- Feedstock mobilization rate

8

Aim

3	2	1	0
Feedstock available in	Feedstock available in	Feedstock available in	No country-wide
large amounts, large	large amounts, small	small amounts, small	assessment on feedstock
percentage of feedstock is	percentage of feedstock is	percentage of feedstock is	potential available
in use	in use.	in use	
	OR: Feedstock available in		
	small amounts, large		
	percentage of feedstock is		
	in use		

3) Valorization of by-products

- Is the use of by-products incentivized?
- Do the by-products contribute to generating economic value?

	Existing i	ncentives	Economic val	ue generation
Energy*	Yes O	No O	Yes O	No O
CO ₂	Yes O	No O	Yes O	No O
Digestate**	Yes O	No O	Yes O	No O

*heat (boilers, gas engines and turbines), combined heat and power (CHP) plants, and fuel cells **e.g., for fertilizer, algae, and biopolymers production

4) Infrastructure performance

• Availability, quality, and compatibility of the supporting infrastructure

Gas grid:

- Clear regulatory framework for grid 10 connection
- ✓ No injection fee
- \checkmark Cost-sharing mechanism in place

Filling stations:

 ✓ Number of compressed natural gas (CNG) + liquefied natural gas (LNG) stations over European average (n=130)

Outlook

Fig: Number of CNG stations in Europe by country, as of 2024. Source: NGVA Europe Stations map. Available from https://www.ngva.eu/stations-map/

4	3	2	1	0

> Methodology >

ts > Outlook

5) Emission reduction potential

Aim

- Replacement of fossil fuels in the energy system has the highest potential
- Followed by digestate application replacing synthetic fertilizers

Fig: Routes in which the production of biogas and biomethane contributes to the reduction of GHG emissions. Source: EBA Statistical Report 2023.

5) Emission reduction potential

- Assumption: biomethane partly replaces natural gas in the energy system
- National reduction potentials are expressed as the share of total transport emissions
- Score for the status quo: below or above the current (2024) European average of 4 %
- Score for the 2050 potential: below o²above 100 % of total 2050 transport emissions

2	1	0
Data available and potential	Data available and potential	No data available on national
over 4 %	under 4 %	level

Aim > Methodology >

Outlook

6) Social perceptions

Market acceptance Consumers, investors, intra-firm		Sociopolitical acceptance Of technologies and policies, by the public, by key stakeholders, by policy makers		Community acceptance Procedural justice, distributional justice, trust
Willingness to use/ to pay	Supplier perceptions	Knowledge and general acceptance	Perception by key stakeholders	Trust, fairness, risk perception
GreenMeUp survey	Market hub interviews	GreenMeUp survey	Policy hub interviews	Regional interviews + expert judgement

Fig: Application of the three-pillar approach to evaluate the national biomethane market uptake. Dark blue: Acceptance pillar, light blue: assessment parameter, orange: data sources.

> Methodology >

Aim

Outlook

Results

6) Social perceptions

Market acceptance	Sociopolitical acceptance	Community acceptance
-------------------	------------------------------	-------------------------

Sub-scores are averaged to give the final score

100 %

0 % 14

Source:Wüstenhagen, Wolsink and Bürer, 2007. Social acceptance of renewable energy innovation: An introduction to the concept. Available from: https://doi.org/10.1016/j.enpol.2006.12.001

7) Financial support

Market-based mechanisms: feed-in tariffs (for biomethane injection or electricity), heat recuperation bonus, connection cost principles, CAPEX support, and other incentives for construction and production

1	5

4	3	2	1	0
Demand-driven	Subsidy operated	Subsidy for only	Subsidy for both	Subsidy for CHP
support	through public	biomethane	biogas and	only
mechanism for	tenders to	(whatever the	biomethane	
specific end-uses in	maximise CO ₂	award mechanism)		
place, e.g., targets	reduction/ public			
for transport	expenditures			

100 %

> Methodology

Outlook 🔵 💭 E

8) Stakeholder networks

• level of communication among key actors, such as government, feedstock providers, plant operators, gas grid operators, and potential users

Aim

- based national experts' knowledge and judgement on stakeholder networks
- ✓ Very strong biogas/biomethane industry representation in the country (e.g., associations representing the industry)
- Very active dialogue between the government and other key actors, such as industrial actors and civil society
- Very active collaboration and communication channels between biogas producers and potential partners (feedstock providers, gas grid operators, potential users, etc.)

0 %

17

What are our main lessons learned

- There is no one-size-fits-all solution.
- It is essential to look from all angles.
- Partners are grateful for an easy overview.
- Cooperation is key.

How do we want to apply the indicators

- Project-internal
 - Inform a SWOT analysis
 - Inform fuzzy cognitive maps
 - Country factsheets and other collaborative synthesis products
- Project-external
 - Stand-alone tool to communicate key areas of development to decisionmakers
 - Broadly applicable to EU countries

> Methodology > Results

What key things should you take away

• The key indicators:

Indicator number	PESTEL category	Indicator name
1	Policy	Level of policy commitment
2	Technological	Feedstock readiness
3	Economic	Valorization of by-products
4	Technological	Infrastructure performance
5	Ecological	Emission reduction potential
6	Socio-cultural	Social perceptions
7	Legal	Financial support
8	Socio-cultural	Stakeholder networks

Aim

• Please reach out if you are interested in applying the indicators!

GREEN/IEUP

Deutsches Biomasseforschungszentrum gemeinnützige GmbH

